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Multiply Schemes and Shuffling 

By M. Rosenblatt* 

Abstract. Multiply schemes are used as a model of a linear congruential scheme. It 

is suggested how the properties of linear congruential schemes as pseudo-random 

number generators might be improved by shuffling. Asymptotic frequencies of pairs 

and triples from multiply schemes are obtained. 

1. Introduction. Multiply schemes have been suggested as an idealized model of 

linear congruential schemes ([1] and [2]) and have also been of interest in number 

theory. It has been suggested that the properties of linear congruential schemes as 
pseudo-random number generators might be improved by shuffling (see [4] and [3]). 

The asymptotic frequencies of pairs and triples from multiply schemes with a uniform 
initial distribution are obtained and it is shown how the asymptotic distribution of pairs 
is improved by a shuffling scheme. From a practical point of view such results are only 

suggestive since they hold for "almost every initial choice" (with respect to the uniform 
distribution) in an idealized model. 

2. Multiply Schemes. We first consider the sequence 

(1)~ ~ ~~X x+ 1 =Nxn modulo 1, n = O, 1, 2, . .. 

with N > 1 an integer. This can be considered an idealized model of the linear con- 
gruential scheme since it assumes unlimited accuracy in that xn can be any real number 
0 < Xn < 1. Also, the uniform measure on [0, 1] is an invariant measure with respect 
to the transformation y Nx modulo one, and we shall take xo with that initial dis- 

tribution. Let 

(2') i[x 6u0,*6 
if xn 

X 
uo, Xn+k < Uk, 

O otherwise. 

We are interested in the asymptotic behavior as n oo of the relative frequencies 

n- 1 

(2") 
1 n-2 

- i[Xj <uo Xj+iu < u, Xj+2 S u2] 
j=1 

and seeing how this deviates from what one requires of a scheme ideally simulating 
random numbers, that is, uoui and uoulu2, respectively, where 0 S ui S 1. 
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The ergodicity of (1) with invariant uniform measure (for xo) implies the existence 
of "time averages" and the equality of "time averages" with "space averages." This 
yields the old result on equidistribution that 

in 
(3) lim u- i[x=6u = u 

n--+oof nJ= 

for afInost every initial value xo, 0 ? u < 1. The same type of argument can be used 
to determine the asymptotic behavior of (2') and (2"). We first consider (2') in the 
following lemma. 

LEMMA 1. Consider the sequence (1) with initial uniform distribution for xo. 
Then, if 0 < a, b < 1, 

1 n1' b [Nabb ?min({Na},b) (4) lirn-F i[bax+1b 

for almost every initial value xo, where [uJ is the greatest integer less than or equal to 
u and {u} = u - [u]. 

From the remarks made earlier, the ergodicity of the sequence implies that the 
limit (4) exists for almost every initial value and is equal to the space average. The 
space average is 

(5) fO<xo_a;O {Nxo}Ib dxo 

Let a = k/N + a/N with k an integer, 0 S k < N, and 0 S a S 1. Then O < xo S a, 
0 S {Nxo} < b if and only if 

j/N?x0 S (j + b)IN, j = 0, 1, . . ., k - 1, 
or 

k/N < xo S (k + min(a, b))/N. 

Thus (5) equals 

(k/N)b + (min(Q, b))/N, 

and we have the desired result. Notice that the deviation from what one would expect 
in the case of independence is of magnitude 0(1/N). The following corollary is immedi- 
ate. 

COROLLARY 1. Under the assumptions of Lemma 1 

(6) lim n [Nalb + min({NV a}, b) - 2 i [x.?<a, xi+r N N 
n--*oo n. NbN 

0 ,S a, b < 1, for almost every initial value xo. 
A similar but somewhat more elaborate argument will now be given to obtain the 

following result on the asymptotic behavior of 3-tuples. 
THEOREM 1. Consider the sequence (1) with uniform distribution for xo. Let 

0 S u, V, w 1 I with 

(7) U =+ + -Na I a = N N 
pa IV7a +b p,la+ b' N b Ab' 
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where u 0) I O,1, . a - I , U 2 = O, 1, . .., )Nb - 11 V 1 = O, 1 , ..., INb -1 , 
0 < a, y, S 1 and a, b are positive integers. Then 

l 
n-a-b 

lim - r < U, XI'+a 'V Xj+a+b < WI 
t=l 

ul u1v 1 + min(u2, v1 )7 + u min(p, y) 
(8) Na+b Na+ U1 ,Na+b 

+ i( y2, v1) ? in( h(V u2) 

+ Na+b )5()8(V1 U2) 

for almost every initial value xo, where 

I if u<v, 
h(u, v) = 

( otherwise. 

The broad outlines of the argument are those of Lemma 1. The space average is 

(9) fxox0u;O?< {Naxo}=xa v;0 {N {NaxO}}=xa+b6W 

First 0 S xa < v, O < xa+b < w if and only if xa is in 

(10) , (Nb Nb) 

or 

(11) tu~~~~~l Vl + min(g, y)? 
\ b b 

Consider one of the intervals (j/Nb, (j + 7)/Nb) = Ij, 0 6 j < vl. Now 0 < xo S u, 
Xa E I, for some j with O < j < v, when 

(12) x E U (A + Nk+ + b +ba ) 

(13) x ( ?)Na Na+bNa N+b if 0 <j ? u2-1, v-1 

and 

(14) (~~~~~~Ul + U2 Ul U2 ? min(a, 'y) 
(14) X (N a Na + b' A Na+b 

if j = u2 < vl. The total contributions from (12), (13), and (14), respectively, to the 
space average are 

u1vly min(U2, V1)y mrn(a" Y) 
Npa+b' N1a+b +b 
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Now we have to determine when 0 < xo < u, 

GE (-vb m )in(f3 7) 

This will happen if 

(15) XoGEkU:(N Ai+ - ? + mnI~) 
(15) xO E *UkO Na, + Nzb' VaN a + sb ) 

(16) / Gu1 v1 ul v1 + min(f3 7) if u2>v1 

(16) v v+mi(,,,) 

\ Na Na+b a Na+b / 

(17) xoe( +?AVi 
u i +vi ? min@a, y3 )) 

if u2 = v1 . The contributions to the space average from (15), (16), and (17), respectively, 
are 

U1 min((3, 7) minQx, (3, y) 
bmin((, y), h(v1, u2) and 6(u2 - v1) 

Na+b 
2) ~~Na+b pV2 

V 
a+b 

The proof of the theorem is complete. Notice that here the deviation from what might 
be expected in the case of independence is O(N-min(a,b)). 

3. Shuffling. We now consider constructing a scheme that is an idealization of 
what is done in shuffling. Let 

(18) xn+i =Nxn modulo 1, Y =Nyn modulo 1, 

with n =* , -1, , 1... Assume that x0 and yo are uniformly distributed on 
[0, 1]. It has already been noted that the uniform distribution is invariant under one 
transformation (1). Further let the joint distribution of xo and yo be the product 
distribution so that the sequences {xn} and {yn} are independent. Set up a "table" 
with M locations 

(19) an () = {an(j);j = 0, 1, ... ,M- 1}, 

and if 

(20) Yn+ = [j/M (j ? 1)/M)O , 

set 

(21) an + l (k) = an(k) if kj, an+ () = Xn + 1 

and 

(22) Zn+ 1 an(j) 

We assume that both N, M are large but that N is much larger than M is. The scheme 

{Xn,, Yn,, an(), zn; n = * , -1, 0, 1, . . . } we shall refer to as a "shuffling" scheme. 

The object of this section is to see in what way the sequence {zn} (at least for pairs 
z--, Zn +1) simulates what one expects from a random-number sequence and contrasts 
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with what was obtained in the last section for the sequence {x,,}. The following two 
lemmas are immediate. 

LEMMA 2. Given any invariant distribution v for (xo, yo) under (18), there is a 

corresponding invariant distribution for the "shuffling" scheme {xn, yn, an (), zn I unde 
(20), (21), and (22) with the given distribution v the marginal distribution for (xo, yo). 

LEMMA 3. Consider the stationary "shuffling" scheme {xn, yn, anO, znM} with 

xo, yo independent and uniformly distributed on [0, 1]. Then zn is uniformly dis- 
tributed on [0, 1]. 

Let 

A ,,= {yn Yn- y1, Yn-2 e Ioj, 

Ba,pj = {yn E I, Y-1 E I; Yn-2 , Yn-3, Yn-. y-i- Ew If ' 

(23) Yn-j-2 EIa,yn-1-3 E1f3}, 

Cce,,p = {yn e Ic,y Yn-1 .E I,; Yn2 I Yn-3o .... Yn(-3 ' I Io; 

Yn-_Z_2 E I, Yn_- EIci} 

A few simple estimates lead to the following result. 
LEMMA 4. Let m be the measure of the stationary "shuffling" scheme {Xn,u Yn, 

an(), zn } with xo, yo independent and uniformly distributed on [0, 11. Then 

(24) 2 3 

and 

(25) m(Bm,1),m(Ca,1) 6M+N- (1_ k ? 4) 

It is enough to obtain the desired estimate for m(B ij) since the argument re- 

quired for the other estimates is similar. Now 

a,pj C B = {yn, Yn-..2 E ([CV/M I/N, ([(a + ')N/M3 ? 1)/N) 

Yn-1 Yn-j-3 E ([ON/M /IN, ([(3 + 1W)//M] + 1)/N) 

Yn_-2. Yn-P * 1 (([aN/M] + 1)/N, [(a + 1)AT/M] IN), 

((f/NIM] + 1)/N, [(P + 1W/MI/N)} 
and the set B is determined by conditions on a finite number of the N-ary digits and 
these are independent. Thus 

m(B) = (m {yn E ([aN/MI /N, ([(a + 1M ? )/N)})2 

(m{yn E ([fN/MI/N, ([(3 + 1)W/MI + 1)/N)})2 

(m{y q (([aN/M] + 1)/N, [(al + 1WN/MI/N), 

(([UN/MI ? 1)/N, [(( + 1)N/M]/N)}); 
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The estimates of Lemma 4 lead to the following theorem. 
THEOREM 2. Consider the stationary "multiply" scheme with x0, y0 independent 

and uniformly distributed on [0, 1]. Then 

(26) Im {zn-1 < u, Zn < v}-uvl < CMN 

if 0 S u, v S 1, with the constant C S 3 if N is sufficiently large relative to M. 
Now 

m{zn-1 6 U, Zn S v} 

(27) = (k 1 ? + 1) mx {Z?,n-1 n- Zn =Xn-kv} 
Ik j1=1 Ikilj> 1 

and 

m {zn-1 = Xni < 6u, Zn = Xn-k < V} 

= m{z1 = Xn, Zn = Xn-k} m{zn-1 ? U, Zn ? Vlzn-1 = Xn-i, Zn = Xn-k} 

(m(A [B) denotes the conditional measure of the set A given set B) and 

(28) m{zn-1 6 U, Zn < Vlzn-1 = Xn,j, Zn = Xn-k} = MU{xn < 6, Xn k V}. 

From (6) we know that Im {xn-, < u, xn_k < v} - uvl is less than 1/N if Ik -il = 1 
and less than I/lN2 if Ik - jl > 1. Further (27) and (28) imply that 

m{zn-1 U,zn < U}-uv16< M2 I 
+ +2M2 

I 
+-) M 

As a final remark we note that under the assumption of Theorem 2, the sequence 
{zn } is ergodic and so 

1 n 
-E i[z1 <u, z. + <VIm {z <u,z2 <v} 

j=l 

as n oo for almost every xo, yO. 
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